2.1.3 LeGHe Per Saldobrasatura

Bronzi e ottoni

Prodotto	Descrizioni		
146-146 MF-146			
XFC ©			146 è una lega della famiglia dei bronzi per uso su ghisa e acciai al C,
:---			
adatta anche per acciai zincati e leghe a base Rame.			
Intervallo di fusione: $885-905^{\circ} \mathrm{C}$			

18-18 MF Lega studiata per la riparazione di pezzi in ottone, bronzo, acciaio e 18 XFC particolarmente acciaio zincato. Deposito omogeneo a tenuta stagna dello stesso colore dell'ottone, adatto anche per giunzioni dissimili tra ferro e rame. L'aggiunta di elementi disossidanti contribuisce a evitare l'evaporazione dello zinco e la produzione di fumi.
Intervallo di fusione: $879-895^{\circ} \mathrm{C}$
185-185 XFC ${ }^{\text {® }} \quad$ Lega per saldobrasatura a base Cu-Zn-Ni per riparazioni e ricostruzioni. Intervallo di fusione: $890-915^{\circ} \mathrm{C}$

186 F Lega rivestita a base Cu-Zn-Ni-Sn per protezione contro l'attrito e contro la corrosione. 186 F è caratterizzata da un basso coefficiente d'attrito per aumentare sensibilmente la resistenza dei pezzi soggetti a attrito metallo/ metallo. Il deposito è lavorabile, esente da porosità e può essere lucidato rendendolo particolarmente adatto all'uso su pezzi con strette tolleranze meccaniche. Adatto anche per applicazioni di unione.
Intervallo di fusione: $820-860^{\circ} \mathrm{C}$
80-80 MF Lega per brasatura di pezzi in ghisa e acciai fortemente sollecitati quali 80 XFC costruzioni tubolari, griglie, scaffalature. Ottima resisteza all'attrito. Intervallo di fusione: $885-910^{\circ} \mathrm{C}$

1185 MF
Bacchetta con rivestimento Mini-Flux per riporti, riparazioni e fabbricazione di pezzi in rame e sue leghe quali York-Albro, bronzi d'alluminio, e unioni di questi con leghe di nichel o ghisa che devono assicurare alta resistenza alla corrosione. Castolin 1185 MF è particolarmente consigliato per la sua resistenza alla corrosione da acqua di mare e da acidi organici e minerali quali acido solforico, acetico, fluoridrico e cloridrico diluito al 5%, soluzioni saline e alcaline.
Intervallo di fusione: $1020-1040^{\circ} \mathrm{C}$

Note tecniche

VANTAGGI NELL ‘USO DELLE LEGHE PER BRASATURA CON ELEVATO TENORE DI ARGENTO:

- La fluidità della lega brasante rende più facile la brasatura.
- La temperatura di lavoro di queste leghe è sotto i $650^{\circ} \mathrm{C}$, il che richiede un basso apporto termico. La crescita dei grani durante il ciclo di riscaldo potrebbe ridurre le caratteristiche meccaniche del metallo base, tanto che è molto importante limitare l'apporto termico. La brasatura con leghe ad alto tenore di Ag crea effetti marginali sugli elementi del giunto (figura in basso a sinistra), e così mantiene inalterate le caratteristiche.
- La duttilità della lega di brasatura assicura migliori prestazioni del giunto brasato in servizio (resistenza alle vibrazioni, resistenza alla trazione, fatica, etc).
- L’uso di queste leghe, attraverso la riduzione dei tempi di riscaldo, la facilità di riempimento del giunto, e la velocità nell'eliminazione dei residui abbatte i tempi e i costi energetici.
- L’aspetto del giunto brasato contribuisce a valorizzarne la qualità.

Ingrandimento 200 x

Giunto capillare brasato con lega d'Ag 1802.

InGRANDIMENTO 200 x

Crescita del grano osservato dopo brasatura Con lega Cu-P-Ag.

Tipi di leghe rivestite

F
Rivestimento di qualità standard

XFC (R) Elastec (R) Rivestimento flessibile

NF
Rivestimento sottile

Tabella Riepilogativa Proprietà Leghe

Prodotto	Rm $\mathrm{N} / \mathrm{mm}^{2}$	$\Omega . \mathrm{cm}$	Densità $\mathrm{g} / \mathrm{cm}^{3}$	Max temp. Servizio ${ }^{\circ} \mathrm{C}$	Dimensioni del giunto mm	Solidus ${ }^{\circ} \mathrm{C}$	Liquidus ${ }^{\circ} \mathrm{C}$	Disossidante consigliato
21.10 Leghe d'Argento Cadfree								
1020XFC	510 ± 10	$16,2 \times 10^{-6}$	9,4	300	0,05-0,1	625	665	1020/Activatec 1000
1666	490	10,8×10-6	9	300	0,1-0,3	660	700	1802PF/1020
1703/L		$29,5 \times 10^{-6}$	8,9	300	0,1-0,2	680	705	1703PF/FluxT
1800	520 ± 10	$16,2 \times 10^{-6}$	9,4	300	0,05-0,1	625	665	1020/Activatec 1000
181/F	480 ± 50	$8,7 \times 10^{-6}$	8,7	300	0,2	740	825	181PF/PF600
21.10 Leghe d'Argento con Cadmio								
1030/XFC	500 ± 50	7,9×10-6	9,1	300	0,1-0,2	625	695	1802PF/1802HF
1700	500 ± 50	7,9×10-6	9,1	300	0,1-0,2	625	695	1802PF/1802HF
1702	410-510	9,3×10-6	9,5	300	0,05-0,1	635	655	1703PF/1802PF
1802/XFC	480	6,5×10-6	9,3	300	0,05-0,1	595	630	Neutro/NeutroN
1810/XFC	400	7,4×10-6	9,16	300	0,1-0,2	604	683	1802PF/PF600
1820/XFC	450 ± 50	8×10^{-6}	8,7	300	0,1-0,3	610	750	181PF/PF600
22.10 Leghe autodisossidanti per brasatura del Rame								
RB 5246	450		8	300	0,1-0,3	715	805	
RB 5280	550		8,1	300	0,1-0,3	650	820	
RB 5283	700		8,4	300	0,1-0,3	650	802	
RB 5286	650		8,2	300	0,1-0,3	650	810	
23.10 Leghe per saldobrasatura e saldatura autogena								
14	250		7,3			1150	1170	14
16/XFC	550	$18,3 \times 10^{-6}$	8,4	300	0,1-0,3	885	915	16/18
18/MF/XFC	480-490	7,3x10-6	8,3	300	<0,2	870	895	18
80/MF/XFC	450-460	12,2×10-6	8,7	300	<0,2	885	910	16/18
146/MF/XFC	400-460	7,9×10-6	8,4	300	<0,2	885	905	16/18
185/XFC	580-600	$16,6 \times 10^{-6}$	8,3	300	HB30 160	890	915	185A/16
186F	490-520	10,6×10-6	7,5	300	HV30 350	820	860	185A/16
	Rm $\mathrm{N} / \mathrm{mm}^{2}$	Conducibilità S.cm	Densità $\mathrm{g} / \mathrm{cm}^{3}$	$\begin{aligned} & \text { Durezza } \\ & \text { HB } \end{aligned}$	Allungamento \%	Solidus ${ }^{\circ} \mathrm{C}$	Liquidus ${ }^{\circ} \mathrm{C}$	
1185 MF	250-500	8x104	7,7	115	25	1030	1040	
	Rm $\mathrm{N} / \mathrm{mm}^{2}$	Resistività ת.cm	Densità $\mathrm{g} / \mathrm{cm}^{3}$	Max temp. Servizio ${ }^{\circ} \mathrm{C}$	Dimensioni giunto mm	Solidus ${ }^{\circ} \mathrm{C}$	Liquidus ${ }^{\circ} \mathrm{C}$	Disossidante consigliato
24 10Leghe per brasatura dolce								
157/T/BN	100	$12,31 \times 10^{-6}$	10,4			221	221	157
1827	150-180	7,7x10-6	8,5			270	280	Alutin 51
24.10 LeGhe Per metalui legaeri								
21/F	138	$3,1 \times 10^{-6}$	2,7	200		575	630	190
Alutin 51	40-50	17×10^{-6}	9,6		0,1-0,2	160	240	Alutin 51
190	160	3,5×10-6	2,65	200	0,15-0,25	575	585	190
194 CW	>100	6×10^{-6}	5,73	100	0,15-0,30	430	440	190 NN
1902	200-250	15,5×10-6	1,8	150	0,1-0,25	443	599	190
	WC \%	Durezza	Densità $\mathrm{g} / \mathrm{cm}^{3}$	Max temp. Servizio ${ }^{\circ} \mathrm{C}$		Solidus ${ }^{\circ} \mathrm{C}$	Liquidus ${ }^{\circ} \mathrm{C}$	Granulometria carburi
23.20 Leghe Per riporti antiusura								
901		55-57 HRc	8,6	> 500				
906		40-42 HRc	8,2	> 500				
912		45-47 HRc	8,6	> 500				

